3.3.57 \(\int \frac {x^3 (a+b \log (c (d+e x)^n))}{f+g x^2} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [A] (verified)
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [C] (warning: unable to verify)
3.3.57.5 Fricas [F]
3.3.57.6 Sympy [F(-1)]
3.3.57.7 Maxima [F]
3.3.57.8 Giac [F]
3.3.57.9 Mupad [F(-1)]

3.3.57.1 Optimal result

Integrand size = 27, antiderivative size = 278 \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2} \]

output
1/2*b*d*n*x/e/g-1/4*b*n*x^2/g-1/2*b*d^2*n*ln(e*x+d)/e^2/g+1/2*x^2*(a+b*ln( 
c*(e*x+d)^n))/g-1/2*f*(a+b*ln(c*(e*x+d)^n))*ln(e*((-f)^(1/2)-x*g^(1/2))/(e 
*(-f)^(1/2)+d*g^(1/2)))/g^2-1/2*f*(a+b*ln(c*(e*x+d)^n))*ln(e*((-f)^(1/2)+x 
*g^(1/2))/(e*(-f)^(1/2)-d*g^(1/2)))/g^2-1/2*b*f*n*polylog(2,-(e*x+d)*g^(1/ 
2)/(e*(-f)^(1/2)-d*g^(1/2)))/g^2-1/2*b*f*n*polylog(2,(e*x+d)*g^(1/2)/(e*(- 
f)^(1/2)+d*g^(1/2)))/g^2
 
3.3.57.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.87 \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=-\frac {\frac {b g n \left (e x (-2 d+e x)+2 d^2 \log (d+e x)\right )}{e^2}-2 g x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )+2 f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )+2 f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )+2 b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )+2 b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{4 g^2} \]

input
Integrate[(x^3*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]
 
output
-1/4*((b*g*n*(e*x*(-2*d + e*x) + 2*d^2*Log[d + e*x]))/e^2 - 2*g*x^2*(a + b 
*Log[c*(d + e*x)^n]) + 2*f*(a + b*Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] - S 
qrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])] + 2*f*(a + b*Log[c*(d + e*x)^n])*Log[ 
(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g])] + 2*b*f*n*PolyLog[2, 
-((Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt[g]))] + 2*b*f*n*PolyLog[2, (Sqr 
t[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g])])/g^2
 
3.3.57.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2863, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx\)

\(\Big \downarrow \) 2863

\(\displaystyle \int \left (\frac {x \left (a+b \log \left (c (d+e x)^n\right )\right )}{g}-\frac {f x \left (a+b \log \left (c (d+e x)^n\right )\right )}{g \left (f+g x^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {f \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g^2}-\frac {f \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g^2}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}-\frac {b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 g^2}+\frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}\)

input
Int[(x^3*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]
 
output
(b*d*n*x)/(2*e*g) - (b*n*x^2)/(4*g) - (b*d^2*n*Log[d + e*x])/(2*e^2*g) + ( 
x^2*(a + b*Log[c*(d + e*x)^n]))/(2*g) - (f*(a + b*Log[c*(d + e*x)^n])*Log[ 
(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*g^2) - (f*(a + b* 
Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g] 
)])/(2*g^2) - (b*f*n*PolyLog[2, -((Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt 
[g]))])/(2*g^2) - (b*f*n*PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sq 
rt[g])])/(2*g^2)
 

3.3.57.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2863
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_)) 
^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a 
 + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a, b, c 
, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
 
3.3.57.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.94 (sec) , antiderivative size = 431, normalized size of antiderivative = 1.55

method result size
risch \(\frac {b \ln \left (\left (e x +d \right )^{n}\right ) x^{2}}{2 g}-\frac {b \ln \left (\left (e x +d \right )^{n}\right ) f \ln \left (g \,x^{2}+f \right )}{2 g^{2}}-\frac {b n \,x^{2}}{4 g}+\frac {b d n x}{2 e g}-\frac {b \,d^{2} n \ln \left (e x +d \right )}{2 e^{2} g}+\frac {b n f \ln \left (e x +d \right ) \ln \left (g \,x^{2}+f \right )}{2 g^{2}}-\frac {b n f \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 g^{2}}-\frac {b n f \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 g^{2}}-\frac {b n f \operatorname {dilog}\left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 g^{2}}-\frac {b n f \operatorname {dilog}\left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 g^{2}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )}{2}+\frac {i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}+\frac {i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}-\frac {i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b}{2}+b \ln \left (c \right )+a \right ) \left (\frac {x^{2}}{2 g}-\frac {f \ln \left (g \,x^{2}+f \right )}{2 g^{2}}\right )\) \(431\)

input
int(x^3*(a+b*ln(c*(e*x+d)^n))/(g*x^2+f),x,method=_RETURNVERBOSE)
 
output
1/2*b*ln((e*x+d)^n)/g*x^2-1/2*b*ln((e*x+d)^n)*f/g^2*ln(g*x^2+f)-1/4*b*n*x^ 
2/g+1/2*b*d*n*x/e/g-1/2*b*d^2*n*ln(e*x+d)/e^2/g+1/2*b*n*f/g^2*ln(e*x+d)*ln 
(g*x^2+f)-1/2*b*n*f/g^2*ln(e*x+d)*ln((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/(e*(-f 
*g)^(1/2)+d*g))-1/2*b*n*f/g^2*ln(e*x+d)*ln((e*(-f*g)^(1/2)+g*(e*x+d)-d*g)/ 
(e*(-f*g)^(1/2)-d*g))-1/2*b*n*f/g^2*dilog((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/( 
e*(-f*g)^(1/2)+d*g))-1/2*b*n*f/g^2*dilog((e*(-f*g)^(1/2)+g*(e*x+d)-d*g)/(e 
*(-f*g)^(1/2)-d*g))+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x 
+d)^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c*(e*x+d)^n)^2+1/2*I*b*Pi*csgn(I*(e*x+d 
)^n)*csgn(I*c*(e*x+d)^n)^2-1/2*I*b*Pi*csgn(I*c*(e*x+d)^n)^3+b*ln(c)+a)*(1/ 
2*x^2/g-1/2*f/g^2*ln(g*x^2+f))
 
3.3.57.5 Fricas [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

input
integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="fricas")
 
output
integral((b*x^3*log((e*x + d)^n*c) + a*x^3)/(g*x^2 + f), x)
 
3.3.57.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\text {Timed out} \]

input
integrate(x**3*(a+b*ln(c*(e*x+d)**n))/(g*x**2+f),x)
 
output
Timed out
 
3.3.57.7 Maxima [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

input
integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="maxima")
 
output
1/2*a*(x^2/g - f*log(g*x^2 + f)/g^2) + b*integrate((x^3*log((e*x + d)^n) + 
 x^3*log(c))/(g*x^2 + f), x)
 
3.3.57.8 Giac [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

input
integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="giac")
 
output
integrate((b*log((e*x + d)^n*c) + a)*x^3/(g*x^2 + f), x)
 
3.3.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int \frac {x^3\,\left (a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )\right )}{g\,x^2+f} \,d x \]

input
int((x^3*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2),x)
 
output
int((x^3*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2), x)